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The Dirichlet generating functions for the number of sublattices fixed under

each symmetry operation of the parent Patterson group may be combined to

count the number of crystallographically nonequivalent sublattices, in total, by

sublattice point group and by colour lattice group type. The combinatorial

formulae used imply the existence of various congruences among the

corresponding arithmetic functions.

1. Introduction

The original article in this series1 (Rutherford, 1992) dealt

with the enumeration, using number theoretical methods, of

the sublattices of a parent lattice that are consistent with the

parent structure and a derived structure belonging to the same

crystal class. Since the intention was to make the work rele-

vant to crystal structures rather than the abstract mathema-

tical lattice, only those sublattices that maintained the relevant

symmetry operations of the parent lattice were considered.

For example, a sublattice was considered cubic only if it

maintained the orientation of the axes present in the parent

cubic lattice, and ‘inclined cubic’ lattices (Frei, 1990) were not

included.

Currently there is renewed interest in counting the number

of derivative structures (or commensurate superlattices in the

terms favoured by physicists) that may arise from some aris-

totype. For example, Hart & Forcade (2008) have developed

an improved algorithm to identify such structures. The present

article is intended to support these endeavours in providing a

closed-form enumeration of these structures in the two-

dimensional case, and indicating how the same might be done

in three dimensions.

There are two major aspects to this work, the first being the

study of symmetry. The subgroups of the crystallographic

plane groups were discussed in detail by Senechal (1979), and

the invariant subgroups in particular completely classified in a

subsequent article (Senechal, 1985). In particular, in the latter

Senechal tabulated the various types of such subgroups H of

finite index in the plane group G, which are the cases of

interest to us, in terms which included the form of their

translational subgroups T H as a 2� 2 matrix defining the basis

vectors, and T G=T H, the translational factor group, essentially

equivalent to the colour lattice group described below.

This work in turn led to a unified description of derivative

structures – crystal structures based on a sublattice S, where

individual unit cells of an underlying lattice K vary in a regular

manner in composition, atomic positions or spin – developed

by Kucab (1981) and Rolley-Le Coz et al. (1983), who based

their descriptions on the colour lattice, in which the lattice

points of K are assigned colours to represent the property in

question. Both these articles recognize that the key to such a

description lies in the structure of the finite Abelian group A

associated with this colour lattice, described by Harker (1978)

as consisting of a direct product of cyclic groups

A ffi �
j
i¼1Cni

1 � j � D; niþ1jni;

where D is the dimension of the lattice.

A has variously been called the colour translation group or

the colour lattice group, according to Lifshitz (1997), who

idiosyncratically names it the lattice colour group. Since the

term colour translation group in D dimensions would more

naturally refer to A� T D, by analogy with the use of colour

space group and colour point group, we shall continue the

practice of Rutherford (1993), which dealt with the distribu-

tion of sublattices among the isomorphism classes, in calling

them colour lattice groups.

De Las Peñas & Felix (2007) continued this line of inves-

tigation with specific regard to the colouring of sublattices,

analysing the sublattices of the square and hexagonal plane

lattices in terms of the combination of point group and colour

lattice group that characterizes each sublattice.

The other major aspect that concerns us is the enumeration

of crystallographic objects using Dirichlet generating func-

tions. Rutherford (1992) applied such functions to enumerate

sublattices that maintained the symmetry of the parent lattice.

This was then followed by enumeration by colour lattice group

for a general lattice (Rutherford, 1993).

1 The series title has now been changed from that used in previous articles,
namely The enumeration and symmetry-significant properties of derivative
lattices, to reflect the relevance to sublattices, since the previous articles were
largely overlooked by subsequent authors. See, for example, Gruber (1997).



More recently du Sautoy et al. (1999) examined the distri-

bution by index of the subgroups of the crystallographic plane

groups, the so-called subgroup growth problem, and derived

the group zeta-functions, i.e. the Dirichlet generating functions

for these numbers. However, their generating functions

present a problem when applied in a typical crystallographic

context, since they combine together subgroups of a given

index indiscriminately. In contrast, we choose to maintain the

usual distinction of classifying minimal crystallographic

group–subgroup relations – the individual steps in descent in

symmetry from an aristotype through a Bärnighausen (1980)

tree – as being either of the translation-equivalent or the class-

equivalent type. In this way we may temporarily set aside the

translation-equivalent steps in such a tree and enumerate only

the nonequivalent sublattices, and assign to each such

sublattice a point symmetry which is maximal for any structure

that adopts that sublattice. The true index of such a structure

in the aristotype will be the product of the index of its lattice in

the parent lattice times the index of the point group of its

structure in the point group of the parent structure.

This enumeration is based on the concept of the parent

lattice being associated with a specific Patterson symmetry.

The Patterson symmetry of a crystal structure, that is, the

symmetry of its self-convolution function, is that of the

centrosymmetric and symmorphic space group which other-

wise corresponds to the actual space group of the structure

(Hahn & Looijenga-Vos, 2002). Since the underlying lattice is

also centrosymmetric and symmorphic, it has this same

symmetry group. Hence we classify the sublattices of given

index n into equivalence classes under the point operations of

this parent symmetry, as shown in Fig. 1.

In the case of the plane groups, this reduces the number of

cases from 17 to 7; for example, the primitive rectangular

plane groups pm, pg, p2mm, p2mg and p2gg all correspond to

Patterson symmetry p2mm.

We shall also have cause to refer to some integer sequences

relevant to our problem which have been published in Sloane

(2008).

2. Effect of parent symmetry

The full group of any plane lattice will include the two-

dimensional translation group T 2 as a subgroup. Hence we

can classify the full group � of any plane lattice as a semidirect

product

� ¼ P .< T 2

where P is a finite point group which may include the

symmetry-operator types 1, 2, 3, 4 and m.

We then apply a standard approach from combinatorics, the

orbit-counting theorem, also called Burnside’s lemma (Burn-

side, 1897), where we enumerate the objects (here sublattices)

that are fixed by each operation of the group (i.e. P) and

average them. This yields

FPðsÞ ¼ ð1=jPjÞ
P
g2P

FgðsÞ; ð1Þ

where FPðsÞ is the total generating function for distinct

sublattices of norm n and FgðsÞ is the function counting

sublattices fixed under the class of operation g 2 P. The FgðsÞ

are Dirichlet generating functions, that is they are formal

series of the type

FgðsÞ ¼
P1
n¼1

fgðnÞn
�s; ð2Þ

where fgðnÞ is an arithmetic function multiplicative in the

primes, i.e.

fgðmnÞ ¼ fgðmÞfgðnÞ;

provided ðm; nÞ are mutually prime.

We next note that the minimum symmetry of a plane lattice

is actually p2, and that the symmetry elements of each group P

can be broken down into coset pairs

gi ¼ 2 � gj

which have the same effect on the lattice. In particular, the

twofold rotation is equivalent to the identity operation. Thus

we may reduce the number of terms in equation (1) by half,

and write

FPðsÞ ¼ ð2=jPjÞ
PjPj=2

i¼1

FiðsÞ; ð3Þ

where the sum is now over only those symmetry elements

which differ in effect.

The generating functions for sublattices fixed by the

possible symmetry elements are collected as entries (a) to (e)

in Table 1; as these each correspond to a set of sublattices of

fixed symmetry, they have been taken directly from Ruther-

ford (1992), but with mc and some nomenclature corrected.

Here the label mp represents a mirror plane fixing a primitive

rectangular lattice and mc a centred one.
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Figure 1
The unit cells of the seven index-4 sublattices of the square lattice,
partitioned into the four equivalence classes under parent p4mm.



The actual calculations are more simply based on the

corresponding arithmetic functions, which are as follows:

ðaÞ �1ðnÞ

ðbÞ rHðnÞ=6

ðcÞ rðnÞ=4

ðdÞ �0ðnÞ 26 j n

�0ðnÞ þ �0ðn=2Þ 2jn

ðeÞ �0ðnÞ 26 j n

�0ðnÞ � �0ðn=2Þ 2jn; 46 j n

�0ðnÞ � �0ðn=2Þ þ 2�0ðn=4Þ 4jn;

where �0ðnÞ is the number of divisors function, �1ðnÞ is the sum

of divisors function, r is the number of representations of n as

the sum of two squares and rH is the number of representa-

tions of n of the form h2 þ hkþ k2. The results of applying

equation (1) for the various plane Patterson symmetries are

given in Table 2.

3. Sublattice point symmetry

We now consider the distribution of these nonequivalent

sublattices by point symmetry. The key here is that the orbit-

counting theorem may be considered to be based on the

reducible representation of the set S, here the set of sublat-

tices S of index n, under the action of the group P. In this

interpretation the Burnside formula simply counts the number

of occurrences of �1, the totally symmetric representation, in

the representation of S, and, since �1 occurs once in the

representation of each orbit, it thereby counts the orbits.

Since we require the sublattices to be invariant to a twofold

rotation in the plane, those irreducible representations �i,

i ¼ 1; . . . s, that are symmetric with respect to this operation

are sufficient to form an orthogonal basis for the representa-

tion �S of the set of sublattices S under the action of the group

P.

In turn each relevant orbit class Oj, where j ¼ 1; . . . t and t is

the number of orbit classes of P, has a (generally reducible)

representation given by

�ðOjÞ ¼ �1 þ
Pr

k¼2

Mjk�k;

where we have included the fact that the totally symmetric

representation appears once in the representation of each

orbit class.

Now, since the orbits partition S uniquely, provided s = t we

can determine a square matrix N such that

no ¼ NnS; ð4Þ

where noðiÞ is the number of orbits of class i and nSðkÞ is the

number of sublattices fixed by symmetry operation k. This

holds true for p2 (trivial, as s = t = 1), and for p2mm,2 c2mm, p4

and p6, for which s = t = 2.

In the s = 2 cases, there can be no ambiguity in labelling the

irreducible representations, and the results follow immedi-

ately. For plane groups G ffi p2mm; c2mm or p4 we have

nOðGÞ

nOðp2Þ

� �
¼

1

2

0 2

1 �1

� �
fE

fg

� �
;
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Table 1
Generating functions for the number of sublattices fixed by the various types of point operations acting on the plane, with the coefficients of the first 30
terms.

n

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

Label and operator Generating function 21 22 23 24 25 26 27 28 29 30

(a) �ðsÞ�ðs� 1Þ 1 3 4 7 6 12 8 15 13 18
1 or 2 12 28 14 24 24 31 18 39 20 42

32 36 24 60 31 42 40 56 30 72

(b) �ðsÞLðs; �3Þ 1 0 1 1 0 0 2 0 1 0
3 0 1 2 0 0 1 0 0 2 0

2 0 0 0 1 0 1 2 0 0

(c) �ðsÞLðs; �4Þ 1 1 0 1 2 0 0 1 1 2
4 0 0 2 0 0 1 2 1 0 2

0 0 0 0 3 2 0 0 2 0

(d) ð1þ 2�sÞ�2ðsÞ 1 3 2 5 2 6 2 7 3 6
mp 2 10 2 6 4 9 2 9 2 10

4 6 2 14 3 6 4 10 2 12

(e) ð1� 2�s þ 2:4�sÞ�2ðsÞ 1 1 2 3 2 2 2 5 3 2
mc 2 6 2 2 4 7 2 3 2 6

4 2 2 10 3 2 4 6 2 4

2 A sublattice of parent p2mm may be p2mm or c2mm, as also can a sublattice
of parent c2mm, depending on its index and colour lattice group.



where the subscript g denotes the relevant operation (m or 4)

of P, and for p6

nOðp6Þ

nOðp2Þ

� �
¼

1

3

0 3

1 �1

� �
fE

f3

� �
:

However, p4mm and p6mm have more orbit classes than

irreducible representations; this is resolved for p4mm, where

the point-group operations are E, 4, m1 and m2, and the orbit

classes are p4mm, p4, �2mm1 (the asterisk is used here

because the orbit class contains sublattices of both types

p2mm and c2mm), �2mm2 and p2, as follows. Equation (1) has

here the explicit form

Fp4mm ¼ ð1=4ÞðFE þ F4 þ Fm1
þ Fm2

Þ: ð5Þ

We first note that additional information is available, in that

we may also write a generating function for the number of

sublattices fixed by all the operations of the point group 4mm,

F4mm ¼ ð1þ 2�sÞ�ð2sÞ ¼ 1þ 2�s þ 4�s þ 8�s þ 9�s þ . . . ;

ð6Þ

and that this number can only be 0 or 1. As a result, there can

only be one valid solution in terms of all nj being non-negative

integers, as the following illustrates.

Table 3 provides an extract from the character table of point

group 4mm (C4v) taken from Kettle (1995). As discussed

above, we only need to consider those representations that are

symmetric under C2, hence a fifth irreducible representation,

E, has been omitted as irrelevant to our calculations. Now,

making an arbitrary choice between the mirror operations �
and �0, the representations of the orbit classes are as follows:

�ðp4mmÞ ¼ A1

�ðp4Þ ¼ A1 þ A2

�ð�mm1Þ ¼ A1 þ B2

�ð�mm2Þ ¼ A1 þ B1

�ðp2Þ ¼ A1 þ A2 þ B1 þ B2:

Now all the representations of any orbit class other than

p4mm contain an even number of irreducible representations

each of order 1, for which each character �g ¼ �1. It follows

that each character in the representation of that class is an

even integer, and that each character in the total set of

sublattices of index n is even, save for any contribution from

an orbit of class p4mm. Since, in turn, there can be at most one

sublattice of index n fixed by all the operations of point group

4mm, the individual terms in equation (5) must either be all

odd or all even, and have the parity of the corresponding term,

one or zero, in the series of equation (6).

Thus we may subtract the term in equation (6) from each of

the terms in equation (5) to give resulting terms that are

always even, and use that result to count the other four

possible orbit classes.

In these cases (p4mm and p6mm) the square matrix that

takes the role of N has the form
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Table 2
Generating functions for the number of nonequivalent sublattices for the plane Patterson symmetries, with the coefficients for the first 30 terms.

n

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

Symmetry Generating function 21 22 23 24 25 26 27 28 29 30

p2 (a) 1 3 4 7 6 12 8 15 13 18
12 28 14 24 24 31 18 39 20 42
32 36 24 60 31 42 40 56 30 72

p2mm 1
2 ðaþ dÞ 1 3 3 6 4 9 5 11 8 12

7 19 8 15 14 20 10 24 11 26
18 21 13 37 17 24 22 33 16 42

c2mm 1
2 ðaþ eÞ 1 2 3 5 4 7 5 10 8 10

7 17 8 13 14 19 10 21 11 24
18 19 13 35 17 22 22 31 16 38

p4 1
2 ðaþ cÞ 1 2 2 4 4 6 4 8 7 10

6 14 7 12 12 16 10 20 10 22
16 18 12 30 17 22 20 28 16 36

p4mm 1
4 ðaþ cþ dþ eÞ 1 2 2 4 4 5 3 7 5 7

4 11 5 8 8 12 6 13 6 15
10 11 7 21 10 13 12 18 9 22

p6 1
3 ðaþ 2bÞ 1 1 2 3 2 4 4 5 5 6

4 10 6 8 8 11 6 13 8 14
12 12 8 20 11 14 14 20 10 24

p6mm 1
6 ðaþ 2bþ 3eÞ 1 1 2 3 2 3 3 5 4 4

3 8 4 5 6 9 4 8 5 10
8 7 5 15 7 8 9 13 6 14



1 0 0 . . .

�1

�1 Q

..

.

0
BBBB@

1
CCCCA:

Writing only Q, which derives from the irreducible repre-

sentations, explicitly, we have for p4mm

nOðp4Þ

nOð�2mm1Þ

nOð�2mm2Þ

nOðp2Þ

0
BB@

1
CCA ¼ 1

4

0 2 0 0

0 0 2 0

0 0 0 2

1 �1 �1 �1

0
BB@

1
CCA

fE � f4mm

f4 � f4mm

fm1
� f4mm

fm2
� f4mm

0
BB@

1
CCA:

The parent point group p6mm may be treated in a similar

fashion, with

F6mm ¼ ð1þ 3�sÞ�ð2sÞ ¼ 1þ 3�s þ 4�s þ 9�s þ 12�s þ . . .

ð7Þ

and fEðnÞ being congruent modulo 2 with fm and modulo 3 with

f6. The process already outlined for p4mm yields

nOðp6Þ

nOð�2mmÞ

nOðp2Þ

0
@

1
A ¼ 1

6

0 3 0

0 0 6

1 �1 �3

0
@

1
A fE � f6mm

f6 � f6mm

fm � f6mm

0
@

1
A:

4. Colour lattice group

The other aspect of the symmetry of the sublattice we need to

identify is its colour lattice group. Only one colour lattice

group, namely the cyclic group Cn, occurs if the index n is

square-free, i.e. has no repeated prime factors, but if it is not

square-free, more than one colour lattice group will occur for

that n. The number of sublattices belonging to each colour

lattice group for given n was derived in Rutherford (1993) by

Möbius inversion, a technique which also may be applied here.

We take a generating function, FPðsÞ, a linear combination

of multiplicative functions, which counts all relevant sublat-

tices irrespective of their colour lattice group. We then define

F 0PðsÞ as the corresponding generating function for sublattices

with colour lattice group Cn. For each such sublattice there is

another with index nm2 and colour lattice group Cmn � Cm for

any m, and so the coefficients fPðnÞ and f 0PðnÞ of these two

series are related by

fPðnÞ ¼
P
m2jn

f 0Pðn=m2Þ: ð8Þ

Hence

FPðsÞ ¼ �ð2sÞF 0PðsÞ;

which implies

F 0PðsÞ ¼ �
�1ð2sÞFPðsÞ;

where

��1
ð2sÞ ¼

P1
n¼1

�ðnÞn�2s ¼ 1� 4�s � 9�s � 25�s þ 36�s . . . :

�ðnÞ is the Möbius function, for which �ðaÞ ¼ 1 if a = 1,

�ðaÞ ¼ ð�1Þr if a is the product of r distinct prime factors, i.e. if

a is square-free, and �ðaÞ ¼ 0 otherwise, i.e. if a is divisible by

the square of a prime.

It is by this means that one may isolate the individual terms

in equation (8). This in turn allows a complete breakdown of

the equivalence classes of sublattices by symmetry (Tables 4

and 5).

5. Discussion

5.1. Interpreting the tables

Let us consider the index 28 sublattices of a parent structure

in p4mm. From Table 1 we may determine the relevant

Dirichlet generating functions for the point operations of

4mm, while from Table 2 we find that the total number of

sublattices of index 28, �1ð28Þ ¼ 56, break down into 18

equivalence classes. Table 5 tells us that these 18 classes

comprise, for colour lattice group C28, four classes of rectan-

gular sublattices with mirror planes parallel to the axes of the

parent, two classes of rectangular lattices with the diagonal

orientation, and nine classes of oblique sublattices, while for

group C14 � C2 we have one class in each of these three

categories.

A crystal structure whose lattice belongs to any of the eight

rectangular classes will have minimum overall index 56 rela-

tive to the parent, and, if it belongs to any of the ten oblique

classes, 112.

Rutherford (1995) provides a method to count the number

of possible structures, treated as colourings of the lattice,

based on index and colour lattice group.

5.2. Integer sequences

�1ðnÞ appears as Sloane (2008) sequence A000203, and the

sequence of equation (6) as both the Dirichlet generating

function (A093709) and as A028982 in the form

1; 2; 4; 8; 9; 16; . . . :

However, in addition, the sequences formed from the coeffi-

cients for p4, p4mm, p6 and p6mm differ, although only in

detail, from similar sequences also listed by Sloane. The

differences arise because Sloane only considers the metrics in

comparing sublattices, and not their precise equivalence in

terms of the arrangement of the interior points of their cosets,

and so treats rotations of other than the crystallographic

(2�=n) types to be valid equivalences. The three sublattices in

Fig. 2, where
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Table 3
An extract from the character table of point group 4mm.

E 2C4 C2 2�v 2�0v

A1 1 1 1 1 1
A2 1 1 1 �1 �1
B1 1 �1 1 1 �1
B2 1 �1 1 �1 1



ðaÞ ¼
5 0

0 5

� �
; ðbÞ ¼

25 0

�7 1

� �
and ðcÞ ¼

25 0

7 1

� �
;

are thus considered equivalent, although they clearly differ in

the arrangement of the interior points (the open circles).

Sublattices (b) and (c) – which would be ‘inclined square’

sublattices in the terminology of Frei (1990) – are only

equivalent to each other as sublattices of a p4mm parent, and

not of a p4 parent, while sublattice (a) is unique in both cases.

In general the points of difference may be identified using

sequences (b) and (c) of Table 1, as detailed below.

(1) A054345. Number of inequivalent sublattices of index n

in a square lattice, where two lattices are considered equiva-

lent if one can be rotated to give the other. Identical to p4

except when (c) > 1.

(2) A054346. Number of inequivalent sublattices of index n

in a square lattice, where two lattices are considered equiva-

lent if one can be rotated and/or reflected to give the other.

Identical to p4mm except when (c) > 2.

(3) A054384. Number of inequivalent sublattices of index n

in a hexagonal lattice, where two lattices are considered

equivalent if one can be rotated to give the other. Identical to

p6 except when (b) > 1.

(4) A003051. Number of inequivalent sublattices of index n

in a hexagonal lattice, where two lattices are considered

equivalent if one can be rotated and/or reflected to give the

other. Identical to p6mm except when (b) > 2, which first

occurs for n = 49.

5.3. Asymptotic estimation

Hart & Forcade (2008) note that the number of equivalence

classes of sublattices, as a fraction of the total number of

sublattices, tends to 2=jPj from above with increasing n.
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Table 4
Numbers of equivalence classes of sublattices for parents p2, p2mm, c2mm, p4 and p6.

For columns 3 to 11, the first row of the column heading shows the parent symmetry and the second row shows the sublattice symmetry.

p2 p2mm c2mm p4 p6

n
Colour lattice
group type p2 �mm p2 �mm p2 p4 p2 p6 p2

2 C2 3 3 0 1 1 1 1 0 1
3 C3 4 2 1 2 1 0 2 1 1
4 C4 6 4 1 2 2 0 3 0 2

C2 � C2 1 1 0 1 0 1 0 1 0
5 C5 6 2 2 2 2 2 2 0 2
6 C6 12 6 3 2 5 0 6 0 4
7 C7 8 2 3 2 3 0 4 2 2
8 C8 12 4 4 4 4 0 6 0 4

C4 � C2 3 3 0 1 1 1 1 0 1
9 C9 12 2 5 2 5 0 6 0 4

C3 � C3 1 1 0 1 0 1 0 1 0
10 C10 18 6 6 2 8 2 8 0 6
11 C11 12 2 5 2 5 0 6 0 4
12 C12 24 8 8 4 10 0 12 0 8

C6 � C2 4 2 1 2 1 0 2 1 1
13 C13 14 2 6 2 6 2 6 2 4
14 C14 24 6 9 2 11 0 12 0 8
15 C15 24 4 10 4 10 0 12 0 8
16 C16 24 4 10 4 10 0 12 0 8

C8 � C2 6 4 1 2 2 0 3 0 2
C4 � C4 1 1 0 1 0 1 0 1 0

17 C17 18 2 8 2 8 2 8 0 6
18 C18 36 6 15 2 17 0 18 0 12

C6 � C3 3 3 0 1 1 1 1 0 1
19 C19 20 2 9 2 9 0 10 2 6
20 C20 36 8 14 4 16 0 18 0 12

C10 � C2 6 2 2 2 2 2 2 0 2
21 C21 32 4 14 4 14 0 16 2 10
22 C22 36 6 15 2 17 0 18 0 12
23 C23 24 2 11 2 11 0 12 0 8
24 C24 48 6 21 8 20 0 24 0 16

C12 � C2 12 8 2 2 5 0 6 0 4
25 C25 30 2 14 2 14 2 14 0 10

C5 � C5 1 1 0 1 0 1 0 1 0
26 C26 42 6 18 2 20 2 20 0 14
27 C27 36 2 17 2 17 0 18 0 12

C9 � C3 4 2 1 2 1 0 2 1 1
28 C28 48 4 22 4 22 0 24 0 16

C14 � C2 8 6 1 2 3 0 4 2 2
29 C29 30 2 14 2 14 2 14 0 10
30 C30 72 12 30 4 34 0 36 0 24



If we call the average value of this fraction R, it is given by

R ¼ lim
n!1

ð2=jPjÞ
PjPj=2

i¼1

fi

� ��
fEðDÞ

� �
;

where fEðDÞ is the total number of sublattices in D dimensions

given by the expansion of
QD

i¼1 �ðs�Dþ 1Þ (Rutherford,

1992).

We next split off the term corresponding to identity

operation E from the others in the numerator:

R ¼ ð2=jPjÞ 1þ lim
n!1

PjPj=2

i¼2

fi

� ��
fEðDÞ

� �" #
:

Since its denominator has asymptotic density proportional to

nD�1, the second term within the square brackets will be

asymptotically zero unless at least one of the terms in the

numerator is also proportional to exactly nD�1. (Any exponent

greater than this leads to R> 1, a contradiction.) Such a term

in turn would have �ðs�Dþ 1Þ as a factor in its generating

function (Knopfmacher, 1990). It may be shown exhaustively

that no symmetry operation in two or three dimensions, other

than the identity operation, has the required properties, and

hence

R ¼ 2=jPj:

5.4. Congruences

Since the various formulae above involve a division by the

group order, the corresponding arithmetic functions must sum

to 0 modulo (jPj/2). This in turn results in the following

congruences:

(1)

fEðnÞ 	 f4ðnÞ 	 fmp
ðnÞ 	 fmc

ðnÞ mod 2:
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Table 5
Numbers of equivalence classes of sublattices for parents p4mm and p6mm.

For columns 3 to 11, the first row of the column heading shows the parent symmetry and the second row shows the sublattice symmetry.

p4mm p6mm

n
Colour lattice
group type p4mm p4 �mm1 �mm2 p2 p6mm p6 �mm p2

2 C2 1 0 1 0 0 0 0 1 0
3 C3 0 0 1 1 0 1 0 1 0
4 C4 0 0 2 1 0 0 0 2 0

C2 � C2 1 0 0 0 0 1 0 0 0
5 C5 0 1 1 1 0 0 0 2 0
6 C6 0 0 3 1 1 0 0 2 1
7 C7 0 0 1 1 1 0 1 2 0
8 C8 0 0 2 2 1 0 0 4 0

C4 � C2 1 0 1 0 0 0 0 1 0
9 C9 0 0 1 1 2 0 0 2 1

C3 � C3 1 0 0 0 0 1 0 0 0
10 C10 0 1 3 1 2 0 0 2 2
11 C11 0 0 1 1 2 0 0 2 1
12 C12 0 0 4 2 3 0 0 4 2

C6 � C2 0 0 1 1 0 1 0 1 0
13 C13 0 1 1 1 2 0 1 2 1
14 C14 0 0 3 1 4 0 0 2 3
15 C15 0 0 2 2 4 0 0 4 2
16 C16 0 0 2 2 4 0 0 4 2

C8 � C2 0 0 2 1 0 0 0 2 0
C4 � C4 1 0 0 0 0 1 0 0 0

17 C17 0 1 1 1 3 0 0 2 2
18 C18 0 0 3 1 7 0 0 2 5

C6 � C3 1 0 1 0 0 0 0 1 0
19 C19 0 0 1 1 4 0 1 2 2
20 C20 0 0 4 2 6 0 0 4 4

C10 � C2 0 1 1 1 0 0 0 2 0
21 C21 0 0 2 2 6 0 1 4 3
22 C22 0 0 3 1 7 0 0 2 5
23 C23 0 0 1 1 5 0 0 2 3
24 C24 0 0 4 4 8 0 0 8 4

C12 � C2 0 0 3 1 1 0 0 2 1
25 C25 0 1 1 1 6 0 0 2 4

C5 � C5 1 0 0 0 0 1 0 0 0
26 C26 0 1 3 1 8 0 0 2 6
27 C27 0 0 1 1 8 0 0 2 5

C9 � C3 0 0 1 1 0 1 0 1 0
28 C28 0 0 4 2 9 0 0 4 6

C14 � C2 0 0 1 1 1 0 1 2 0
29 C29 0 1 1 1 6 0 0 2 4
30 C30 0 0 6 2 14 0 0 4 10



These arise from the various formulae for p4, p2mm and

c2mm. These functions only have odd values when there is a

sublattice fixed by all the operations of p4mm, that is when

F4mm is nonzero. Since fEðnÞ is �1ðnÞ, the sum-of-divisors

function, this includes the well known result that �1ðnÞ is only

odd if n is a square or twice a square.

(2) Since

fEðnÞ þ f4ðnÞ þ fmp
ðnÞ þ fmc

ðnÞ 	 0 mod 4

we have

�1ðnÞ þ
rðnÞ

4
þ 2�0ðnÞ 	 0 mod 4; 46 j n

�1ðnÞ þ
rðnÞ

4
þ 2�0ðnÞ þ 2�0ðn=4Þ 	 0 mod 4; 4 j n:

Now �0ðnÞ is only odd if n is a complete square, so the third

term of the left-hand side above is congruent to 0 mod 4

unless n is a square, as is the fourth term where it exists.

Inserting these values gives

�1ðnÞ þ
rðnÞ

4
	

(
2 mod 4 if n is an odd square;
0 mod 4 otherwise:

(3) We note

fEðnÞ 	 f6ðnÞ mod 3:

This relationship, combined with fEðnÞ 	 fmc
ðnÞ mod 2, is

enough to also ensure the requirement

fEðnÞ þ 2f6ðnÞ þ 3fmc
ðnÞ 	 0 mod 6:

I wish to thank Dr Gus Hart (Provo, Utah) for suggesting

the problem and stimulating discussions, and the two anon-

ymous referees for suggesting significant improvements.
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Figure 2
The three index-25 square sublattices of a p4mm parent.


